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Abstract. There is weak bulk but stmng surface coupling between electrons and phonons for 
many polar crystals. In this paper, the influences of the electron i n t m t i o n  with both the 
weak-coupling bulk longitudinal ~ptical  and the stmng-coupling surface optical phonons on the 
tempemure characreristic of the surface polaron is discussed. The temperature dependences of 
the vibration frequency. the induced potential and the effective mass of the surface polaron were 
investigated using a linear-combination operator method. Numerical dculation, for a AgCl 
crystai. as an example, illustrates that the vibration frequency, the induced potential and the 
effective mass of the surface polaron will decrease with increasing temperature. 

I 

1. Introduction 

In the early 1970s, Ibach [I] carried out low-energy electron diffraction (LEED) experiments 
on ZnO and other semiconductor surfaces. The surface or interface polarons in the 
crystals are of considerable interest. The behaviour of the electron-phonon interaction 
near the surface or interface of the dielectric layer has been studied by many workers 
[Z, 31. Recently, there have been some new investigations of the temperature dependence 
of the polaron mass [4-71. In these theoretical studies, the different mechanisms of 
the electron-phonon interaction and the different theoretical approximation methods have 
provided two completely contrary conclusions. In early investigations, Yokota [8] found that 
the polaron mass decreases with increasing temperature using the Hartree approximation. 
However, using the Gurari variation method, Fulton [9] reached the opposite conclusion. 
Until now, the conclusions have not been identical. At low lattice temperatures, some 
theories [4,S] predicted the same result as did Yokota, while others [6,7] led to a polaron 
mass that increases with increasing temperature. The polaron mass in crystals is usually 
determined by cyclotron resonance experiments in a weak magnetic field. For different 
materials the experimental results also showed the same two contrary conclusions. The 
experimental data for the silver halides illustrated that the mass would increase as the 
lattice temperature increased [lo]. In the cyclotron resonance measurements on GaAs- 
Gal,AI,As heterojunctions Brummell et al [ll] reported an anomalous case, i.e. the m a s  
increases with increasing temperature up to about 100 K and starts to decrease for higher 
temperature. 

Huybrechts [12] proposed a linear-combination operator method, by which a strong- 
coupling polaron was investigated. Later, many workers [13,14] studied the strong-coupling 
polaron in many aspects by this method. On the basis of Huybrechts’ work, Tokuda [lS] 
added another variational parameter to the momentum operator and also evaluated the 
ground-state energy and effective mass of the bulk polaron. For the bulk poliron, the weak- 
and intermediate-coupling theories are applicable for the electron-bulk longitudinal optical 
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(LO) phonon coupling constant oli 6 [16], whereas for the surface polaron this confinement 
is about 2.5 [17]. Hence, when the electron-surface optical (so) phonon coupling constant 
satisfied cu, > 2.5, the strong-coupling theory must be applied. There is weak coupling 
between the electron and the bulk LO phonon but strong coupling between the electron and 
the so phonon for many polar crystals. So far, research into this has been very scarce. The 
properlies of the surface or interface polaron in polar crystals have been discussed by the 
method of a linear-combination operator and a simple unitary transformation by one of the 
present authors and a co-worker [18]. 

In the past, most work on surface or interface polarons in polar crystals was devoted 
to the calculation of the ground-state energy and the effective mass of polarons at zero 
temperature, and to the discussion of the dependence of the polaron’s properties on the 
electron-phonon coupling strength. In fact, the case of a finite temperature is more 
significant. In recent years there has been a renewed interest in the temperature dependence 
of the properties of surface or interface polarons. 

The purpose of this present paper is to explore the effect of the electron-phonon 
interaction on the temperature behaviour of surface polarons. With both the weak coupling 
between the electron and bulk Lo phonon and the strong coupling between the electron 
and so phonon included, we obtain an expression for the effective mass of the surface 
polaron as a function of the temperature T and coordinate z and the temperature dependence 
of the induced potential of the surface polaron by using the linear-combination operator 
method. Numerical calculations, taking a AgCi crystal as an example, are performed and 
the temperature dependence of these quantities for the surface polaron in polar crystals are 
discussed. 

2. The Hamiltonian 

A surface between a AgCl crystal and vacuum is perpendicular to the z axis: the semi- 
infinite space z > 0 is occupied by the AgCl crystal, whereas the space z < 0 is a vacuum. 
A slow electron is placed inside the AgCl crystal at a distance z (> 0) from the surface.. We 
assume the effective-mass approximation to be valid and, for the slowly moving electron, 
the effect of small and finite penetration of the electron through the surface to be negligible. 
Because our interest is to investigate directly the temperature dependence of the polaron 
qualitatively, for simplicity we consider only the interaction between the electron and long- 
wavelen,& optical phonons without the influence of the electronic polarizability. With the 
above considerations, the Hamiltonian of the electron-phonon system in explicit form can 
be written as 117-191 
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In (la), the first two terms are the kinetic energies of the electron in the directions 
perpendicular and parallel to the surface of the crystals. The third term represents the 
energy of the image potential. The fourth and fifth terms in ( la )  are the energies of the 
bulk LO and so phonon fields, respectively. The last two terms describe the electron-bulk 
LO phonon and electron-so phonon interaction energies. S and V are the surface area and 
the volume, respectively, of the AgCl crystal. m is the band mass of the electron and K 
is its wavevector (in ( l a )  the subscript 11 denotes the projection of a given vector onto a 
plane parallel to the surface). OL and w, are frequencies of the bulk Lo and so phonons, 
respectively. In these expressions, a: and a, are the creation and annihilation operators, 
respectively, of a bulk LO phonon with a three-dimensional wavevector zu and b: and 
bq are the corresponding operators for the SO phonon with a two-dimensional wavevector 
Q . and p are the momentum and the position vector, respectively, of an electron in a 
plane parallel to the surface. pz and z are the momentum and position, respectively, of the 
electron in the z direction. so and sm are the static and high-frequency dielectric constants, 
respectively, of the crystal. 

The Hamiltonian can formally be divided into two parts: 

H = HI + HI1 (k) 

where 

and the rest is called 4. On the assumption that the motion in the z direction is slow. 
thus in determining the motion state in the x-y plane, quantities such as the momentum 
and position in the z direction may be regarded as parameters. This procedure is exactly 
analogous to the quasi-adiabatic approximation [20-22]. For motion parallel to the x-y 
plane we introduce the unitary transformations 

where Ai (i = 1,2) is a parameter characterizing the coupling strength. In the unitary 
transformation U], Ai = 1 corresponds to the weak-coupling limit and Ai = 0 corresponds 
to the strong-coupling limit f,,,, f;, ge and g; are variational parameters. 



8170 Bao-Quan Sun et a1 

Following Tokuda [E] we also introduce the linear combination of the creation operator 
bj' and annihilation operator bj to represent the momentum and position of the electron: 

where the subscript j refers to the x and y directions, h and p~ are the variational parameters, 
and b; and bj are boson operators satisfying the boson commutative relation. Applying 
the transformations ( 3 4  and (3b) to the Hamiltonian HI and using the operator expressions 
(4a) and (4b) and the fact that, in the unitary transformation U I ,  A1 = 1 corresponds to the 
weak coupling between the electron and the bulk LO phonon and A2 = 0 comesponds to 
the strong coupling between the electron and the surface LO, we can easily obtain 

where l@(z)) is the wavefunction in the z direction. I{nj)) and I(n,,,){n~)) are the 
wavefunctions for describing the polaron and phonon states, in which {nj), In,) and {ne )  
represent the numbers of surface polarons, bulk LO phonons and so phonons, respectively. 
In the occupation number picture we have 

, 

b:lnj) = -1.j + 1) 

ailn,) = + 1) a,ln,) = &Inw - 1) (7) 

bjlnj) = &lnj - 1) 

b$lnQ) = W l n Q  + 1) bQlnQ) = - 1). 
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3. The effective Hamiltonian and the effective mass 

In the variation for minimizing the ground-state energy with respect to the variational 
parameter and the functions mentioned above, the system must be constrained by the 
conservation of total momentum. However, in the adiabatic approximation, the momentum 
in the z direction is regarded as a parameter; so it is only constrained by the total momentum 
parallel to the x-y plane; 

The minimization problem is now carried out by the use of the Lagrange multipliers. 
Choosing an arbitrary constant multiplier U, we have 

Q2 = I - n - + O  
2mA 

F ( A ,  fw, gQ, U ,  PO) may be called the variational parameter function. Minimizing (9b) with 
respect to A, fw, gQ, U and po, we can determine these parameters and functions. In the 
calculation procedures above, we have considered the symmetry of the electron moving in 
the x-y plane, with n, = ny  = n, and neglected the higher-order small quantity terms of 
the wavevector. For weak coupling between the electron and bulk LO phonons, we also 
neglected the interaction of the phonons with different wavevectors due to recoil. Using the 
variational method, we get 

V; sin(w,z) 
fw = - f i2wf /2m +Eo[ - h(fiA/2m)l/zpo. wll 

exp( - Qz) V;i exp(-R Q2/4m A) B(n) 
h ~ ~ , - f i Q . u  gQ =- 
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and their complex conjugate expressions. Substituting (10) into (9b), we have 
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The final two terms in (11) can be calculated by replacing the summation with integration 
and expanding them up to the second-order term of U and po for a slow electron. In this 
expression, the first-order terms in PO, 'WII and Q . U are equal to zero; thm, we have 

dx 

(1 - 2nx2) exp(-xZ -2zuhx)dx 

The extremum condition aF/apo = 0 gives 

(2m,mh)'12 
1 - ( i r / S ) U I +  k I L ( Z )  PO = 
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Substituting (13) into (12a), we get 

Far a slaw electron, U is very small, one can omit the finai tem in (14) sa that the variation 
in F(h,  U) with respect to h yields 

It is evident from the structure of this expression that U has the meaning of velocity which 
may be regarded as the average velocity of the surface polaron in the x-y plane, and the 
factor before U, namely 

can be interpreted as the effective mass of the surface polaron. 
The effective Hamiltonian of the surface polaron’can be represented as 

=~HL + ~ ~ ~ ~ l ~ ~ ~ l ~ l ~ ~ l l ~ ~ ~ j l l ~ ~ ~ I ~ ~ j J ~ I I ~ , ~ ~ I I ~ n ~ ~  

we now consider two limiting cases. 
(1) The electron is very near the surface, i.e. z << U;’ or U;’. In this case, we have 
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From (18) one can see that the effective mass and the effective Hamiltonian of the surface 
polaron are independent of the interaction between the electron and the bulk LO phonon 
whereas they are dependent on the interaction between the electron and the so phonon. The 
increasing part of the effective mass of the surface polaron is proportional to af because 
of the interaction between the electron and the SO phonon. The self-trapping energy is 
(?r/8)[(1 -n)*/2n+ l]c!:fio, and proportional to CL:. The self-trapping energy will decrease 
when the temperature increases. It is induced by the polarization of SO vibration only. In 
the low-temperature limit n, = ne = n = 0, our results are identical with that of Hipolito 
[23] and that in [IS]. 

(2) The electron is very deep in the bulk, i.e. z >> U;' or U;'. In this case, we have 

h=O ( 1 9 4  

(19~)  

The effective mass and the effective Hamiltonian of the surface polaron are only dependent 
on the interaction between the electron and bulk Lo phonon. The self-trapping energy is 
(n/2)a&ol and proportional to CY,. In the low-temperature limit n,  = nQ = n = 0, our 
results are identical with those of [18,20]. 

4. Temperature dependence of the surface polaron 

At a finite temperature, the electron system is no longer in the ground state entirely. The 
lattice vibrations excite not only real phonons but also electrons in a parabolic potential 
well. The properties of the polaron are a statistical average of the electron-phonon system 
in various states. As shown in [IS], the phonon frequencies will decrease with increasing 
temperature but, if the temperature is restricted to a range lower than room temperature 
(T < 300 K), the relative change (IAwl/o) in the frequency is only 1%. Then we can 
take the phonon frequencies as approximately constant. With the consideration mentioned 
above, we assume that the eigenvalues of a$aw and b$bq in the phonon state at a finite 
temperature are given by the Planck distribution functions. According to quantum statistics, 
we have 

E =  exp - - 1  [ (3 I-' 
-1 

z, = [ eq  (s) - I] 

-I 

i ig  = [exp (s) - I] 

where k~ is the Boltmann constant. 
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However, the value of A determined by (15) relates not only to the value of z but also 
to the value of ii, which should be self-consistent with (20). Substituting (20) into (15), we 
can obtain the relation of A to z and T .  Finally, the effective Hamiltonian of the surface 
polaron can be expressed as 

V,’ = -a,h(w,A)”*M(z) (216) 

are the image potential, the potential induced by the electron-Lo phonon interaction and 
the potential induced by the electron-so interaction, respectively. The effective potential is 
defined as 

veff = v,, + q b  + 5”. ( 2 1 4  

Following Gang [20] we define the ‘dead layer’ of the sutface polaron. Its thickness is 
determined by 

Vefflz=d = 0. (22) 

Evidently, both the induced potential and the thickness of the dead layer of surface polarons 
depend on the temperature. ~ 

Table 1. The data for a AgCl crystal. All the parameten are taken h m  [%I. 

Rut Ro,  
Material 611 E, (meV) (meV) 01 a, 
AeCl 9.5 3.97 23.0 21.6 1.97 2.89 

5. Results and discussion 

In this section, taking the polaron in the surface of a AgCI crystal as an example, we 
perform a numerical evaluation. In table 1, the data for a AgCl crystal are given. Figure 1 
shows the variation in the frequency h of the surface polaron in a AgCl crystal with the 
coordinate z at different temperatures. The solid curve denotes the case T = 100 K, and 
the broken curve represents the case of zero temperature. From the figure, one can see that 
the frequency A will decrease with increasing z. At the same position (same value of z), 
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I ~~~~ ~ 

~. 
0 4 8 

z (10-~"1 

Figure 1. The relation between .I and L in a AgCl crystal at different temperatures. 

Figure 2. The relation benveen A and T at a certain coordinate z = 5 x m. 

the higher the temperature, the smaller is the value of A. From figure 1, one can also see 
that the frequency of the surface polaron will decrease with increasing temperature. The 
dependence of the vibrational frequency of the polaron for a AgCl crystal on temperature 
at a certain coordinate z = 5 x IOy9 m is plotted in figure 2. From figure 2, we also 
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Figure 3. The relation between m'/m and L at different temperatures 

5.0 za lL.---- 60 100 140 
T I K I  

Figure 4. The relation between m'/m and T at a ceaain coordinate :'= 5 x IO-' m. 
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T I K I  
100 140 

I i i r 9 m i  

Figure 5. The relation between the image potential 
Vimg and induced potentials q' and vib and L in a AgCl 
crystal at different temperattua T. 

Figure 6. The relation between the induced patential 
5' and effective potential V,tr and T 3t a certain 
coordinate z = 5 x m 

see that the vibrational frequency of the surface polaron changes little with temperature for 
T < 80 K, whereas it changes strongly with temperature for T > 80 K. 

Figure 3 shows the relation between the effective mass m*/m and the coordinate z at 
different temperatures T. The broken curve denotes the case of zero temperature, and the 
solid curve represents the case T = 100 K. From the figure, one can see that, as a result 
of the temperature behaviour of the electron-phonon interaction, the value of the effective 
mass m* f m  will decrease with increasing temperature at the same value of the coordinate 
z. Figure 4 give the relationship between the effective mass m*/m in a AgCl crystal and 
the temperature T at a certain coordinate z = 5 x m. Figure 4 also shows that the 
effective mass of the surface polaron changes little with temperature for T < 80 K, whereas 
it changes strongly with temperature for T > 80 K. From (186) we find that in the two- 
dimensional limit ( z  + 0) the temperature behaviour of the polaron mass is really attributed 
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to the SO mode effect. 
the induced potential 

vib resulting from the electron-bulk LO phonon interaction, the induced potential Ys resulting 
from the electron-SO phonon interaction and the effective potential Vea in a AgCI crystal 
with the coordinate z at different temperatures T. The solid curve denotes the case 
T = 100 K, and the broken curve represents the case of zero temperature. It is indicated that 
there is only a temperature dependence of the electron-so phonon interaction, whereas the 
image potential and the electron-bulk LO phonon interaction are independent of temperature. 
It can be seen from figure 5 that vib increases with increase in z,  whereas V: increases with 
decreasing z. Near the surface, the electron-so phonon interaction is dominant, whereas 
in the bulk far from surface of the electron-bulk Lo phonon interaction is dominant. The 
curve of the effective potential of the surface polaron is also drawn in figure 5. As z + 0, 
the surface polaron is repelled away from the surface, i.e. the surface polaron is not able 
to exist near the surface. Thus the surface polaron cannot get infinitely near to the surface: 
there is no polaron in the range near the surface (Vev > 0). Because of the similarity to the 
case of excitons we call the thin layer the surface polaron-free surface layer (SPFSL) or the 
dead layer of surface polarons. Solving the equation 

Figure 5 show the relationship between the image potential 

the root is the depth of the SPFSL, which we denote as d (for a AgCl crystal, d = 1.27 A). 
From figure 5, we also see that the induced potential vi. and the effective potential Vea 
in a AgCl crystal will decrease with rise in temperature. Figure 6 show the relationship 
between the induced potential and the effective potential VB with temperature T at a 
certain coordinate (z  = 5 x m). From figure 6, we also see that the induced potential 
4" and the effective potential V, of the surface polaron change little with temperature for 
T < 80 K, whereas they change strongly with temperature for T > 80 K. 
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